

Content

Introduction

Seq2Seq Model Architecture Limitation

Gated recurrent units to attention

RNN LSTM & GRU Attention

Transformer

Introduction Encoder Decoder

Conclusion

References

Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) and Gated Recurrent neural networks (GRU) in particular, have been firmly established as state of the art approaches in sequence modeling [4].

Figure: RNN

Introduction 2 Seq2Seq Model

Figure: LSTM

Introduction 3 Seq2Seq Model

SHILL

The seq2seq model was born in the field of language modeling [3]. the idea here, is to transform an **input sequence (source)** to a **new one (target)** and both sequences can be of arbitrary lengths.

The seq2seq model was born in the field of language modeling [3]. the idea here, is to transform an **input sequence (source)** to a **new one (target)** and both sequences can be of arbitrary lengths. The seq2seq has an **encoder-decoder architecture**, composed of:

Encoder : An encoder processes the input sequence and compresses the information into a context vector (also known as sentence embedding) of a fixed length.

The seq2seq model was born in the field of language modeling [3]. the idea here, is to transform an **input sequence (source)** to a **new one (target)** and both sequences can be of arbitrary lengths. The seq2seq has an **encoder-decoder architecture**, composed of:

- Encoder : An encoder processes the input sequence and compresses the information into a context vector (also known as sentence embedding) of a fixed length.
- Decoder : A decoder is initialized with the context vector to emit the transformed output.

This representation obtained by the encoder (fixed length vector) is expected to be a good summary of the meaning of the whole source sequence, but this is not always the case.

- This representation obtained by the encoder (fixed length vector) is expected to be a good summary of the meaning of the whole source sequence, but this is not always the case.
- A critical and apparent disadvantage of this fixed-length context vector design is incapability of remembering long sentences.

Gated recurrent units to attention

Looking at the simple RNN naïve transition function

Looking at the simple RNN naïve transition function

$$f(h_{t-1}, x_t) = \tanh\left(Wx_t + Uh_{t-1} + b\right)$$

With this naïve transition the error must backpropagate through all the intermediate nodes:

$$(h_t) \stackrel{U^{\top}}{\longrightarrow} (U^{\top}) \stackrel{U^{\top}}{\longrightarrow} (U^{\top}) \stackrel{U^{\top}}{\longrightarrow} (U^{\top}) \stackrel{U^{\top}}{\longrightarrow} (h_{t+N})$$

Looking at the simple RNN naïve transition function

$$f(h_{t-1}, x_t) = \tanh\left(Wx_t + Uh_{t-1} + b\right)$$

With this naïve transition the error must backpropagate through all the intermediate nodes:

$$(h_t) \underbrace{U^{\top}}_{U} \underbrace{U^{\top}}_{$$

The Back propagation through time imply :

$$\frac{\partial J_{t+n}}{\partial h_t} = \frac{\partial J_{t+n}}{\partial g} \frac{\partial g}{\partial h_{t+N}} \underbrace{\prod_{n=1}^{N} U^{\top} \operatorname{diag}\left(\frac{\partial \tanh\left(a_{t+n}\right)}{\partial a_{t+n}}\right)}_{Problematic!}$$

A key idea behind LSTM and GRU is the additive update.

$$h_t = u_t \odot h_{t-1} + (1 - u_t) \odot \tilde{h}_t$$
, where $\tilde{h}_t = f(x_t, h_{t-1})$

This additive update creates linear short-cut connections

What are those adaptive shortcuts [1]? When unrolled, it's a weighted combination of all previous hidden vectors.

$$h_t = u_t \odot h_{t-1} + (1 - u_t) \odot \tilde{h}_t$$

= $u_t \odot \left(u_{t-1} \odot h_{t-2} + (1 - u_{t-1}) \odot \tilde{h}_{t-1} \right) + (1 - u_t) \odot \tilde{h}_t$

$$=\sum_{i=1}^{l} \left(\prod_{j=i}^{l-i+1} u_j\right) \left(\prod_{k=1}^{l-1} (1-u_k)\right) h_i$$

Attention Gated recurrent units to attention

$$h_t = \sum_{i=1}^t \left(\prod_{j=i}^{t-i+1} u_j\right) \left(\prod_{k=1}^{i-1} (1-u_k)\right) \tilde{h}_i \quad \mathbf{0}$$

- 2. Can we "free" candidate vectors?
- 3. Can we separate keys and values?
- 4. Can we have multiple attention heads?

$$h_t = \sum_{i=1}^{l} \alpha_i f(x_i), \text{ where } \alpha_i \propto \exp(\operatorname{ATT}(f(x_i), x_t))$$
 2

 $h_t = \sum_{i=1}^{n} \alpha_i \tilde{h}_i, \text{ where } \alpha_i \propto \exp(\operatorname{ATT}(\tilde{h}_i, x_t))$ **1**

$$h_t = \sum_{i=1}^{s} \alpha_i \overline{V}(f(x_i)), \text{ where } \alpha_i \propto \exp(\operatorname{ATT}(\overline{K}(f(x_i)), \overline{Q}(x_t))) \quad \mathbf{3}$$

$$h_t = [\underline{h_t^1}; \cdots; \underline{h_t^K}], \text{ where } h_t^k = \sum_{i=1}^{\iota} \alpha_i^k V^k(f(x_i)), \text{ and } \alpha_i^k \propto \exp(\operatorname{ATT}(K^k(f(x_i)), Q^k(f(x_t))))$$

.

Attention (Sense of positions) Gated recurrent units to attention

The current formulation of the attention is position-invariant:

ATT(A, B, C) == ATT(B, C, A)

The current formulation of the attention is position-invariant:

$$ATT(A, B, C) == ATT(B, C, A)$$

The idea is to include some sens of position to the formulation, to account for position and distances between inputs.

The current formulation of the attention is position-invariant:

$$ATT(A, B, C) == ATT(B, C, A)$$

The idea is to include some sens of position to the formulation, to account for position and distances between inputs.

$$h_t^k = \sum_{i=1}^T \alpha_i^k V^k \left(f(x_i) + \mathbf{p}(\mathbf{i}) \right)$$

$$\alpha_i^k \propto \exp\left(\mathsf{ATT}\left(K^k \left(f(x_i) + \mathbf{p}(\mathbf{i}) \right), Q^k \left(f(x_t) + \mathbf{p}(\mathbf{i}) \right) \right) \right)$$

The current formulation of the attention is position-invariant:

$$ATT(A, B, C) == ATT(B, C, A)$$

The idea is to include some sens of position to the formulation, to account for position and distances between inputs.

$$h_{t}^{k} = \sum_{i=1}^{T} \alpha_{i}^{k} V^{k} \left(f(x_{i}) + \mathbf{p}(\mathbf{i}) \right)$$
$$\alpha_{i}^{k} \propto \exp\left(\mathsf{ATT}\left(\mathcal{K}^{k} \left(f(x_{i}) + \mathbf{p}(\mathbf{i}) \right), Q^{k} \left(f(x_{t}) + \mathbf{p}(\mathbf{i}) \right) \right) \right)$$

The choice of positional embedding p(i) can be obtained from:

- Learned Positional Embedding [Sukhbataar et al., 2016]
- Sinusoidal Positional Embedding [Vaswani et al., 2017]

Transformer [4] is a model architecture relying entirely on an attention (self-attention) mechanism without using sequence-aligned recurrent architecture to draw global dependencies between input and output.

- Transformer [4] is a model architecture relying entirely on an attention (self-attention) mechanism without using sequence-aligned recurrent architecture to draw global dependencies between input and output.
- The Transformer follows seq2seq architecture but using stacked self-attention and point-wise, fully connected layers for both the encoder and decode.

- Transformer [4] is a model architecture relying entirely on an attention (self-attention) mechanism without using sequence-aligned recurrent architecture to draw global dependencies between input and output.
- The Transformer follows seq2seq architecture but using stacked self-attention and point-wise, fully connected layers for both the encoder and decode.
- ► The encoder maps an input sequence of symbol representations (x₁, ..., x_n) to a sequence of continuous representations z = (z₁, ..., z_n). Given z, the decoder then generates an output sequence (y₁, ..., y_m) of symbols one element at a time

The Transformer was first proposed in the paper Attention is All You-Need

13

The Transformer was first proposed in the paper Attention is All You-Need

Figure: Image source [5]

The encoder is composed of a stack of N = 6 identical layers.

Salomon KABONGO, Twitter : @SalomonKabongo1, Web : https://skabongo.github.io | The Transformer, From RNN to Attention

A multi-head self-attention mechanism,

- A multi-head self-attention mechanism,
- A simple, position-wise fully connected feed-forward network.

- A multi-head self-attention mechanism,
- A simple, position-wise fully connected feed-forward network.

Each of those sub-layers is as well proceed by a **residual connection** and followed by a **layer norm**.

- A multi-head self-attention mechanism,
- A simple, position-wise fully connected feed-forward network.

Each of those sub-layers is as well proceed by a **residual connection** and followed by a **layer norm**.

The decoder is composed also of a stack of N = 6 identical layers.

A modified multi-head self-attention mechanism, to prevent positions from attending to subsequent positions.

- A modified multi-head self-attention mechanism, to prevent positions from attending to subsequent positions.
- A simple, position-wise fully connected feed-forward network.

- A modified multi-head self-attention mechanism, to prevent positions from attending to subsequent positions.
- A simple, position-wise fully connected feed-forward network.
- A multi-head attention over the output of the encoder stack

- A modified multi-head self-attention mechanism, to prevent positions from attending to subsequent positions.
- A simple, position-wise fully connected feed-forward network.
- A multi-head attention over the output of the encoder stack

Each of those sub-layers is proceed by a **residual connection** and followed by a **layer norm**.

There have been works to improve the presented **vanilla Transformer** for **longer-term attention span**, **less memory** [5] and **computation consumption**, ...

- [1] NLP AMMI Course, Kyunghyun Cho, Facebook Al.
- [2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate, 2014.
- [3] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks, 2014.
- [4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need, 2017.
- [5] L. Weng. The transformer family. *lilianweng.github.io/lil-log*, 2020.

