
PAPER SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA 1

Video Object Co-Segmentation via Subspace
Clustering and Quadratic Pseudo-Boolean

Optimization in an MRF Framework
Chuan Wang, Yanwen Guo, Jie Zhu, Linbo Wang, Wenping Wang, Member, IEEE

Abstract—Multiple videos may share a common foreground
object, for instance a family member in home videos, or a
leading role in various clips of a movie or TV series. In this
paper, we present a novel method for co-segmenting the common
foreground object from a group of video sequences. The issue was
seldom touched on in the literature.

Starting from over-segmentation of each video into Temporal
Superpixels (TSPs), we first propose a new subspace clustering
algorithm which segments the videos into consistent spatio-
temporal regions with multiple classes, such that the common
foreground has consistent labels across different videos. The
subspace clustering algorithm exploits the fact that across differ-
ent videos the common foreground shares similar appearance
features, while motions can be used to better differentiate
regions within each video, making accurate extraction of ob-
ject boundaries easier. We further formulate video object co-
segmentation as a Markov Random Field (MRF) model which
imposes the constraint of foreground model automatically com-
puted or specified with little user effort. The Quadratic Pseudo-
Boolean Optimization (QPBO) is used to generate the results.
Experiments show that this video co-segmentation framework
can achieve good quality foreground extraction results without
user interaction for those videos with unrelated background,
and with only moderate user interaction for those videos with
similar background. Comparisons with previous work also show
the superiority of our approach.

Index Terms—video, co-segmentation, subspace clustering.

I. INTRODUCTION

UPON its release in 2012, the famous Titanic 3D, as
its 2D version released in 1997, achieved critical and

commercial success. Rolling Stone film critic Peter Travers
rated the reissue 3.5 stars out of 4, and said "The 3D intensifies
Titanic." and "Caught up like never before in an intimate epic
that earns its place in the movie time capsule". Behind this
success the huge efforts are the cooperative endeavors of a
technical team consisting of hundreds of artists and computer
engineers. It was reported that the conversion from 2D to
3D took about 60 weeks and $18 million, most of which
were spent on segmenting the video frames and extracting
prominent foreground and background objects for assigning
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them depth. Undoubtedly, segmentation of video data into
semantic parts is a fundamental research topic for its wide
applications, such as visual tracking, video retrieval, compres-
sion, and human-computer interaction.

Most existing efforts [1][2][3][4][5][6] concentrate on a
single video as input. Segmentation of a single video is a
challenging problem, and usually needs user assistance for
supplying the sampling of foreground and background or
correcting segmentation errors. Moreover, within an individual
video accidental similarities in appearance or motion among
foreground and background might be so deceptive that lead to
ambiguous and even incorrect results easily. For the production
of Titanic 3D, different clips in the movie generally share
common foreground objects with similar appearance. Such a
scenario holds for many other video data, for instance a family
member in home videos, a hero/heroine in different shots of a
TV series, and a famous player in sports videos. This induces
us to explore the possibility of segmenting simultaneously the
common foreground object from a group of videos. Exploiting
the common or similar appearance across different videos
may facilitate segmentation, since a group of related videos
may provide more information which can be applied to better
inference of the foreground. We refer to this problem as
video co-segmentation, and co-segmentation of the common
foreground objects from multiple related videos is the goal of
this paper.

Video co-segmentation, as an emerging research problem,
is receiving increasing attention recently. To the best of our
knowledge, there are only a few methods [7][8][9] specifically
designed to address this problem till now. These methods,
however, either phrase it as a multi-class labeling problem [9]
thus are not competent for the task of the common object
co-segmentation we concern, or make strong assumptions
about object motions which significantly limit the applicability.
For instance, they usually overuse motions by assuming that
several videos contain the common object with similar motions
in addition to similar appearance [7], or these videos can
be roughly grouped into foreground and background regions
according to motion similarity within each video [8]. They
generally ignore the fact that in multiple videos the common
object rarely implies consistent motions as the appearance.
Therefore, video object co-segmentation is still a problem that
needs to be intensively explored.

In this paper, we propose a novel framework for segment-
ing the common foreground objects in a group of videos
consistently. This is accomplished by subspace clustering
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on Temporal Superpixels (TSPs) of the input videos and a
subsequent Quadratic Pseudo-Boolean Optimization (QPBO)
procedure using a Markov Random Field (MRF) model de-
fined on videos. Our framework is applicable to the generic
scenario of video object co-segmentation since we do not make
further assumptions on the appearance and motions of video
foreground and background as previous methods have done.

The common foreground object of different videos should
have similar statistics of appearance features. To model fore-
ground appearance, we develop an appearance-motion-fused
subspace clustering algorithm to yield initial multi-label clus-
tering results. Multiple appearance and motion features are fed
into the subspace clustering algorithm. Although foreground
objects across different videos may have quite different motion
characteristics, motions can be used to better distinguish
different parts within each video, making accurate foreground
extraction within each video easier, especially around those
ambiguous and low contrast object boundaries. We then for
each video build a bag-of-words like descriptor. This im-
plicitly links the common foreground objects with the same
semantics across videos. We further formulate video object co-
segmentation as an MRF model which imposes the constraint
of appearance model of the foreground and is optimized by
QPBO.

Contributions: To summarize, our contributions are:
• A novel framework that consistently segments the com-

mon foreground objects in a group of videos, and is
applicable to generic videos.

• An appearance-motion-fused (amf) co-segmentation algo-
rithm that leverages the appearance and motion features,
based on subspace clustering.

The remainder of the paper is organized as follows. The
related work is introduced in Section II. Section III gives a
high-level overview of our framework. The key components of
our framework, preprocessing, subspace clustering, and object
co-segmentation by QPBO are presented in Sections IV, V
and VI respectively. We evaluate our method in Section VII
and conclude the paper finally.

II. RELATED WORK

Our work is inspired by previous work on video segmenta-
tion and co-segmentation, image co-segmentation, as well as
3D shape co-segmentation.

A. Video segmentation and co-segmentation

Extraction of video object has received considerable atten-
tion over the past decade [10][11][12][13]. User interactions
are more or less required to specify the sampling of foreground
and background, and to remove errors caused by inseparable
statistics of the foreground and background and temporal
discontinuities. Early video cutout methods are generally based
on global classifiers [13][14]. Recent efforts seek to extract
accurate object boundaries by using local, directional, or
combined classifiers [1][15], followed by foreground matting
used to remove remaining errors.

Video co-segmentation has received increasing attention
recently. Multi-class video co-segmentation is enabled in [9]
by a generative multi-video model. This method realizes multi-
class clustering where the number of classes is unknown
beforehand, but cannot provide sufficiently accurate segmen-
tation for a common foreground object of different videos.
The problem of video object co-segmentation is addressed
in [7][8]. Co-segmentation is posed as an optimization prob-
lem under a probabilistic framework in [7]. However, its
applicability is limited by the dependency on objectness and
saliency based initial estimation of foreground as well as
the requirement that the foreground object undergoes similar
motions across different videos. We compare our video co-
segmentation approach with [9][7] through experimenting with
a variety of video examples in the experiments. In [8], the
intra-video motion cues and the inter-video appearance model
together are taken into account for segmenting the common
object in a pair of video sequences. The method may fail for
the videos with similar foreground and background motions
since it relies on motion-based video grouping for identifying
candidate object within each video first. It can be seen that
video object co-segmentation is still an emerging research
problem to be intensively investigated.

B. Image and 3D shape co-segmentation

The problem of image co-segmentation was first studied by
Rother et al. [16] and has gained considerable attention in
the last few years [17][18][19][20][21][22]. The basic goal is
to segment a common salient foreground object from two or
more images. Consistency between the extracted object regions
is ensured by imposing a global constraint which penalizes
variations between the objects’ respective histograms or ap-
pearance models. However, direct generalization of image co-
segmentation methods to video co-segmentation is infeasible
since it remains challenging to build a comprehensive fore-
ground model for videos. Furthermore, the scale of video co-
segmentation problem itself makes direct extension of image
co-segmentation unpractical.

More recently, the concept of co-segmentation has
been generalized to the 3D shape segmentation problem
[23][24][25][26]. In [26], Hu et al. consider co-segmentation
as a clustering problem, which is well solved by subspace
clustering fed with multiple geometric features. This inspires
us to explore the possibility of realizing video co-segmentation
by subspace clustering.

III. OVERVIEW

Our video object co-segmentation framework takes a group
of videos as input and produces their common foreground as
output. It runs in the following steps (See Figure 1).

Preprocessing: To improve the efficiency of subsequent
steps, we over-segment each video into Temporal Superpixels
(TSPs). We also compute statistical appearance and motion
features on each TSP as its descriptors as will be described in
Section IV.
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Fig. 1. Workflow of our object co-segmentation framework. Columns from left to right: a video set as input, over-segmentation by TSP, clustering results
by our amf-co-segmentation algorithm and object cutout results.

Amf-co-segmentation via subspace clustering: With the
feature descriptors, our amf-co-segmentation algorithm in-
tegrates the appearance and motion information, and uses
subspace clustering to cluster all TSPs by solving an ob-
jective function defined over a unified affinity matrix. This
yields multi-label clustering results which in essence are
similar to the output of multi-class video co-segmentation
problem defined and pursued by [9]. However, we further
rely on the output of this step to build a bag-of-words like
histogram descriptor for each video, by which the common
foreground is linked across different videos implicitly. Our
amf-co-segmentation algorithm will be introduced in Section
V.

Object co-segmentation via QPBO: We formulate video
object co-segmentation as an MRF model which imposes
constraint of the common foreground model. Upon the M-
RF model, we build an undirected graph whose nodes are
all TSPs and edges are constructed by considering spatio-
temporal consistency in both appearance and motion. We
extract the common foreground by Quadratic Pseudo-Boolean
Optimization in this MRF framework, and the details are
described in Section VI.

IV. PREPROCESSING

In the preprocessing stage, we over-segment each video into
Temporal Superpixels (TSPs) [27] over which multiple statisti-
cal appearance and motion features are computed. This process
also allows the subsequence steps to operate efficiently.

A. Over-segmentation with TSP

Even short video sequences contain a large number of
pixels. The scale of this problem makes it computationally in-
feasible to process the data at pixel level. Normally superpixel
or supervoxel, as an important preprocessing step, is applied
to videos by various algorithms. However, as indicated in [27],
off-the-shelf superpixel algorithms running independently on
each frame will produce superpixels that are unrelated across
time, and supervoxel is not specifically designed for video
data.

In this paper, we use the generative probabilistic model
[27] to over-segment each video into Temporal Superpixels
(TSPs). Each TSP is a set of local video pixels in space and
tracks the same part of an object across time. Note that, to
accommodate large motions, SIFT flow [28] instead of optical
flow originally applied by [27] is used to relate segments
between two successive frames. This benefits us since SIFT
flow establishes more robust feature correspondences than
optical flow. Thus more consistent TSPs across frames and
more accurate motion trajectories of them can be obtained.

B. Feature description

We extract for each TSP the appearance features and its
motion trajectory.

Appearance features: We compute the raw features in-
cluding 17-D texture by Winn filter bank [29] as well as
HSV color at pixel level. Gaussian mixture model and dis-
cretization of feature space are then applied to the texture
and color features, separately. We thus have two kinds of
feature distributions, each of which describes the TSP with a
histogram. An appearance feature vector is formed on each
TSP by concatenating the two histograms. It is observed
that TSPs from the common object of interest have similar
feature distributions. As a result, these feature vectors are
likely to be in common subspaces generated by standard basis
corresponding to the nonzero bins. Figure 2 (b) shows an
example.

Motion trajectory: Multiple spatio-temporal regions cor-
responding to different motions in a video can be separated by
subspace clustering [30] because the 2D trajectories associated
with a single rigid motion live in a 3D subspace under the
affine camera model. In this paper, given a video sequence
with F frames, the 2D trajectories of all TSPs are represented
as a 2F ×N matrix

T =

 c11 · · · c1N
...

...
...

cF1 · · · cFN

 (1)

where i-th column is the trajectory of its corresponding TSP,
and cfi is the center [cfix , cfiy ]

T of the intersection of TSP and
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Fig. 2. Subspace clustering. (a) An illustration of subspace clustering in
R3. (b) The appearance feature, i.e. HSV histograms of two TSPs belonging
to the orange clownfish. Due to the similar distributions, these two feature
vectors are in a common subspace spanned by standard basis corresponding
to the nonzero bins.

frame-f . Noted that TSPs produced by [27] cannot guarantee
each one passing through all frames due to newly appeared
or vanished objects, or large motions not always tracked.
For the remaining incomplete trajectories, we simply fill the
empty entries by copying their nearest non-empty entry in
the corresponding column. Our experiments show this scheme
simple but works well in most cases.

V. APPEARANCE-MOTION-FUSED CO-SEGMENTATION VIA
SUBSPACE CLUSTERING

In spite of possible variance due to changes in illumination,
view angles, and non-rigid object motions, the foreground
objects in different videos should have similar statistics of
appearance features, which is a vital cue to relate them with
each other. Besides, object motions within each video can
facilitate differentiating foreground from background even
though they may be inconsistent across different videos. To
fully utilize the two kinds of features, we have developed
an appearance-motion-fused (amf) co-segmentation algorithm
whose core is subspace clustering. The TSPs of all videos
are grouped into clusters with which a bag-of-words like
histogram descriptor for the common video object can be
obtained.

We first briefly introduce the background of subspace clus-
tering. Then our appearance-motion-fused co-segmentation
algorithm which is applicable to a group of videos is described
in detail.

A. General subspace clustering

The problem of subspace clustering aims at clustering data
vectors into multiple subspaces and finding a low-dimensional
subspace fitting each cluster of vectors [31].

Notation: Given a feature data matrix
X = [x1, x2, ..., xN ] each column of which is a feature
sample xi ∈ RD drawn from a union of P subspaces {Si}Pp=1

of unknown dimensions, subspace clustering aims to segment
the data vectors into their respective subspaces. Figure 2 (a)
illustrates subspace clustering in R3.

Low-Rank Representation (LRR) solution: Since the data
vectors of X are drawn from a union of P subspaces, each of
them can be represented by the linear combination of X itself
as the basis such that X = XZ with Z = [z1, z2, ..., zN ].
The LRR algorithm [32] is based on the observation that

Z should be low-rank because each data vector can always
be represented by a sparse linear combination of the ones
belonging to the same linear subspace. Consequently, the low-
rank representation can be obtained by solving the following
problem

min
Z,E
‖Z‖∗ + λ ‖E‖2,1 , s.t. X = XZ + E (2)

where ‖·‖∗ represents the nuclear norm (sum of the singular
values) and ‖·‖2,1 denotes the `2,1 -norm [32] for character-
izing noise E. λ > 0 is a parameter balancing the influences
of the two parts.

According to [32], an affinity matrix that encodes the
pairwise affinities among data vectors naturally derives from
the solution Z∗ of problem (2). Specifically, the affinity (S)ij
of two data vectors xi and xj can be calculated by

(S)ij = |(Z∗)ij |+ |(Z∗)ji| (3)

where (·)ij denotes the (i, j)-th entry of the matrix. With such
an affinity matrix, spectral clustering algorithm NCut [33] is
applied to get the final clustering result.

B. Amf-co-segmentation to a video group

LRR algorithm as mentioned above, is originally designed
to handle a single type of feature. In our formulation of the
video co-segmentation problem, since appearance and motion
features need to be taken into account simultaneously but
treated unequally, it cannot be directly used here. For ease
of exposition, we first formulate the video co-segmentation
problem as follows.

Given L videos, each of which has been over-segmented
into nl TSPs, l = 1, 2, ..., L. Thus there are N =

∑L
l=1 nl

TSPs in total. For each TSP, we compute K features including
appearance and motion as mentioned in Section IV-B, so as
to get K feature matrices {Xk}(k = 1, 2, ...,K), where Xk

is Dk × N and Dk is the dimension of k-th feature. Recall
that we compute the 17-D texture, HSV color histogram and
motion trajectories as the features of each TSP, then K is set to
3 in all our experiments. To distinguish Xk and Zk belonging
to appearance and motion features, we tag them with A orM
so that Xk or Zk belonging to appearance/motion feature can
be written as Xk or Zk ∈ A / M. The goal of our amf-co-
segmentation is to separate all TSPs into P clusters with all
Xk as input, such that the common foreground has consistent
labels of clusters across different videos.

To fully utilize appearance and motion features jointly
within each video but treat them differently across videos,
our amf-co-segmentation algorithm is proposed to consider
multiple features with a penalty term imposed on them by
solving the following optimization problem:

min
Z1,...,ZK
E1,...,EK

K∑
k=1

(‖Zk‖∗ + λ ‖Ek‖2,1) + α Pamf(Z1, ..., ZK)

(4)
s.t. Xk = XkZk + Ek, k = 1, . . . ,K

where α > 0 is a parameter set to 1×10−5 in our experiments
and Pamf is the consistent penalty term. The part of summation
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in Problem (4) is to apply LRR to each feature. If no other
constraint is introduced, these features will actually work
independently, causing each pair of data vectors to have
various affinities corresponding to K features. The introduced
Pamf aims to infer a unified affinity matrix by seeking the
sparsity-consistent low-rank affinities Zk over appearance and
motion feature matrices jointly but freezing the effect of
motion feature within each video simultaneously.

Z1 (X1 ∈ A)

Z2 (X2 ∈ A)

Zk (Xk ∈ M)

Fig. 3. Construction of the matrix Z. Blue represents the diagonal blocks
corresponding to intra-video affinities Z(l,l)

k . Green and red denote inter-video
affinities Z

(l,m)
k (l 6= m) corresponding to appearance and motion features.

When constructing Z, the inter-video affinities of matrices Zk corresponding
to appearance features replace those belonging to Zk of motion features,
which means that motion affinities take effect as appearance ones within each
video only.

The structure of Xk and Zk: Since every feature matrix
Xk is constructed with concatenated features X(l)

k belonging
to the l-th video, it can be represented as a block matrix as
follows

Xk = [X
(1)
k , X

(2)
k , ..., X

(L)
k ] (5)

Then XkZk can be written as

XkZk =
[
X

(1)
k , · · · , X(L)

k

]
Z

(1,1)
k · · · Z

(1,L)
k

...
. . .

...
Z

(L,1)
k · · · Z

(L,L)
k

 (6)

where Zk is also represented as a block matrix. The diagonal
blocks in Zk, i.e. Z(l,l)

k (l = 1, 2, ..., L) encode the affinities
of data vectors within l-th video; and the non-diagonal ones,
i.e. Z(l,m)

k (l 6= m) encode the affinities of data vectors across
the l-th and m-th videos. As aforementioned, across multiple
videos appearance features should be similar but there is no
guarantee on motion, therefore for Zk ∈ A, its diagonal
and non-diagonal blocks should have equal status, which is
however not true for Zk ∈ M. Specifically, in this case,
since the motion similarity across videos is not reliable, all
the affinity information in blocks Z(l,m)

k (l 6= m) cannot be
treated equally as Z(l,l)

k . To reserve the valid information only,
we use a mask matrix which is of the same size as Zk

(M)ij =

{
1 if (Zk)ij locates at diagonal block,
0 otherwise.

(7)

Let ◦ be the element-wise product, then M ◦Zk sets all non-
diagonal blocks in Zk to zero, meaning that motion affinities
across different videos are filtered out.

The penalty Pamf : Within each video, the affinity of a
pair of data vectors should be consistent under all feature
descriptors including motion. Across different videos, the
affinity should be consistent only on appearance features. We
therefore define the penalty term Pamf as follows,

Pamf = ‖Z‖2,1 (8)

where

Z =


(T Z1)11 (T Z1)12 · · · (T Z1)NN

(T Z2)11 (T Z2)12 · · · (T Z2)NN

...
...

. . .
...

(T ZK)11 (T ZK)12 · · · (T ZK)NN

 (9)

is a K × N2 matrix formed by concatenating T Zk. T Zk is
defined as

T Zk =

{
Zk if Zk ∈ A
M ◦ Zk +

(J−M)◦
∑

Xl∈A Zl

|A| otherwise
(10)

where J is an all-one matrix and | · | is the cardinality of a set.
T operates on Zk in the following manner. For the affinities

Zk ∈ A, the output is actually Zk itself, meaning that all
the entries in appearance affinity matrix are equally valid.
However for Zk ∈ M, since its inter-video affinities are not
reliable, we first use the mask defined by Equation (7) to filter
out the intra-video motion affinities, setting the inter-video
affinities to zero. Then we further use the average inter-video
appearance affinities to fill up the yielded zero entries. The
filling step after filtering is necessary because the yielded zero
affinity in Zk ∈ M will strongly keep other Zk ∈ A from
taking effect across videos, due to its strong potential tend
informing that the corresponding data vectors are not similar.
With the operation T , the intra-video parts of Zk ∈M remain
unchanged while the inter-video parts (non-diagonal blocks)
resemble their counterparts in Zk ∈ A.

The `2,1 norm on Z is defined by

‖Z‖2,1 =

N2∑
j=1

‖Z(∗, j)‖2 (11)

where Z(∗, j) is the j-th column of Z and ‖·‖2 is the `2 norm.
`2,1 norm can induce column sparsity of Z, meaning each
pair of data vectors should have consistent affinities in terms
of appearance and motion features. As a result, the sparsity-
consistency of T Zk(k = 1, 2, ...,K) is guaranteed. At the
same time, the inter-video motion affinities are shielded, only
leaving the intra-video ones assist to distinguish foreground
from background.

Figure 3 illustrates the construction of Z.
Optimization: Problem (4) is convex and can be solved

with the augmented Lagrange multiplier (ALM) method [34].



PAPER SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA 6

Clustering result by LRR
(HSV color histogram as feature)

Clustering result by LRR
(motion trajactory as feature)

Clustering result by our method
(two features combined)Frame No. 7

Fig. 4. An example of the amf-co-segmentation results on a pair of video shots from the film Life of Pi. Columns from left to right: two frames from
each video, clustering results by LRR with appearance feature only, results by LRR with motion feature only, and the results by our amf-co-segmentation
algorithm. In each column, the same color represents the same class. Obviously, our amf-co-segmentation generates more consistent clustering results on the
common foreground tiger.

First, it is converted into the following equivalent problem

min
{Jk},{Sk}
{Zk},{Ek}

K∑
k=1

(‖Jk‖∗ + λ ‖Ek‖2,1) + α ‖Z‖2,1 (12)

s.t. Xk = XkSk + Ek, Zk = Jk, Zk = Sk,

k = 1, 2, ...,K (13)

Then Problem (12) can be solved by the so-called alternating
direction method (ADM) [34], listed in Algorithm 1. Note that
the sub-problems of the algorithm are convex with closed-form
solutions. Step 1 is solved via the singular value thresholding
operator [35], while steps 3 and 4 are solved via Lemma 4.1
of [32].

Let (Z∗1 , Z
∗
2 , . . . , Z

∗
K) represent the optimal solution to

the objective function (4), the unified affinity matrix S is
constructed with

(S)ij =
1

2


√√√√ K∑

k=1

(T Z∗k)2ij +

√√√√ K∑
k=1

(T Z∗k)2ji

 (14)

NCut is applied to this affinity matrix to produce the co-
segmentation result that groups all TSPs into clusters corre-
sponding to the subspaces.

Figure 4 shows an simple example by our algorithm. Note
that in column 2, multiple classes are produced on the tiger,
when only HSV color histogram is used as feature. In column
3, when only motion trajectory is taken as the feature, it
distinguishes different semantic regions in each video, but
lacks consistent labels across the input videos. The tiger
is labeled as yellow in the top row but as deep blue in
the bottom. This shows that the common foreground do not
necessarily presents consistent motions across different videos.
In column 4, our amf-co-segmentation yields more consistent
clustering results across the two videos. The tiger is labeled
as blue in both videos. We further compare the final cutout
results by motion-excluded and motion-included features in
the experiment of unsupervised object co-segmentation with
more examples, please refer to Section VII-B1 for more
details.

VI. OBJECT CO-SEGMENTATION

The amf-co-segmentation stage actually yields a bag-of-
words like histogram description for each video. We further
formulate video object co-segmentation as a binary label-
ing problem that aims to extract the common foreground
simultaneously. It is achieved by defining a Markov Random
Field (MRF) model on TSPs, while imposing the constraint
of foreground model. Object co-segmentation is achieved by
Quadratic Pseudo-Boolean Optimization (QPBO) under this
MRF framework.

A. Estimation of video-level foreground histogram

All TSPs of the video group have been clustered into P
classes corresponding to the P subspaces after the amf-co-
segmentation stage. This results in a bag-of-words [36] like
histogram description for each video. Let us define a histogram
matrix H l of size P × nl for video-l, l = 1, 2, ..., L such that

(H l)bj =

{
1 if the j-th TSP is in the b-th class
0 otherwise.

(15)

Its histogram description hl is thus hl = H l1 where 1 is a
nl×1 column vector of all ones. The foreground histogram hlf
is H lyl where yl is a binary nl×1 column vector for (yl)i = 1
if the i-th TSP is foreground and (yl)i = 0 otherwise.

The common foreground of all videos is supposed to be
nearly identical by eliminating the scale difference. That
is to say, if we stack all the latent foreground histograms
into a matrix Hf = [h1f , h

2
f , ..., h

L
f ], it should be closely

rank-one. We further apply Rank One Decomposition to
H = [h1, h2, ..., hL] to get the approximation of Hf noted
as Ĥ = [ĥ1, ĥ2, ..., ĥL], where each column is an estimation
of the foreground histogram of video-l.

B. QPBO in the MRF framework

For each video sequence l, an undirect graph G(V, E) is
built whose nodes V are TSPs and edges E connect relevant
TSPs. There are two cases that a pair of TSPs are linked by
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Algorithm 1 Solving Problem (12) by ADM
Inputs: Feature Matrices {Xk}(k = 1, 2, ...,K), parameters
λ and α
while not converged do

1. Fix the others and update {Jk} (k = 1, 2, ...,K) by

Jk = argmin
Jk

‖Jk‖∗
µ

+

∥∥∥∥Jk − (Zk +
Wk

µ
)

∥∥∥∥2
F

2. Fix the others and update {Sk} (k = 1, 2, ...,K) by

Sk = (I +XT
k Xk)

−1(XT
k (Xk − Ek) + Zk

+
XT

k Yk + Vk −Wk

µ
)

3. Fix the others and update Z by

Z = argmin
Z

α

µ
‖Z‖2,1 + ‖Z−Q‖2F

where Q is a K ×N2 matrix formed as follows:

Q =


(T Q1)11 (T Q1)12 · · · (T Q1)NN

(T Q2)11 (T Q2)12 · · · (T Q2)NN

...
...

. . .
...

(T QK)11 (T QK)12 · · · (T QK)NN


where Qk = (Jk+Sk−(Wk+Vk)/µ)/2, k = 1, 2, ...,K
and T is the same defined as Equation (10).
4. Fix the others and update {Ek} (k = 1, 2, ...,K) by

Ek = argmin
Ek

λ

µ
‖Ek‖2,1+

∥∥∥∥Ek − (Xk −XkSk +
Yk
µ
)

∥∥∥∥2
F

5. Update the multipliers

Yk ← Yk + µ(Xk −XkSk − Ek)

Wk ←Wk + µ(Zk − Jk)
Vk ← Vk + µ(Zk − Sk)

6. µ← min(1.1µ, 1010).
7. Check the convergence conditions:

(Xk −XkSk − Ek)→ 0

(Zk − Jk)→ 0

(Zk − Sk)→ 0, k = 1, 2, ...K

end while
Output: Z

an edge. The first is that they fall into the same class by our
amf-co-segmentation algorithm. The second is that they are
spatio-temporally adjacent to each other.

The binary labelling problem is to assign a unique label
yi ∈ {0(background), 1(foreground)}, i = 1, 2, ..., nl for
each node such that the energy El(y) can be minimized:

min
yl

El(yl) =
∑
i∈V

El
d(y

l
i) +

∑
(i,j)∈E

El
s(y

l
i, y

l
j)︸ ︷︷ ︸

MRF Gibbs Energy

+γ
∥∥∥H lyl − ĥl

∥∥∥2
2

(16)
where the first two terms on the left are data and smooth terms

[CF13] Ours Feature
(chicken, turtle) 0.65 0.680811 rgb(k=5)
(giraffe, elephant) 0.53 0.350656 labh(k=8)
(zebra, lion) 0.48 0.536727 hsvh(k=5)
(tiger) 0.3 0.307819 rgb(k=5)

      
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(chicken, turtle) (giraffe, elephant) (zebra, lion) (tiger)

[CF13] Ours

Fig. 5. Comparison of co-segmentation accuracies between our method and
[9] on MOViCS dataset.

TABLE I
RUNTIME COMPARISON BETWEEN [9] AND OUR METHOD. #: INCLUDING
OPTICAL FLOW + SUPERPIXEL + FEATURES. *: INCLUDING SIFT FLOW +
TSP + FEATURES. THE DATA OF [9] IS GOT FROM ITS SUPPLEMENTARY

MATERIAL.

Preprocessing Clustering
[9]# Ours∗ [9] Ours

(chicken, turtle) 1h 40m 1h 10m 1h 12m 1h 04m 13s
(giraffe, elephant) 1h 33m 54m 1h 22m 13m 15s

(zebra, lion) 3h 19m 2h 14m 3h 13m 1h 23m 20s
(tiger) 1h 11m 48m 59m 30m 18s

respectively, derived from the traditional MRF Gibbs energy.
γ > 0 is a parameter penalizing the variation between the
latent foreground histogram H lyl and the given estimation ĥl.
Obviously, the rightmost term aims to reinforce the similarity
between the foreground histogram H lyl induced by the op-
timal yl and ĥl. With this term we show that with moderate
or even no user intervention, the common foreground can be
extracted simultaneously from a group of videos.

Equation (16) is called the Quadratic Pseudo-Boolean func-
tion, which is sub-modular and can be solved with roof duality
by the QPBO algorithm. We refer readers to [37] for a detailed
description of QPBO. Note that roof duality may produce
unlabeled TSPs. In implementation as we found unlabeled
TSPs usually belong to background, we just labelled them
as background in all our experiments. This method is simple
but works well in practice.

In our implementation, the smooth term is set as follows

El
s(y

l
i, y

l
j) = βij |yli − ylj | (17)

where βij is set to the average color similarity of TSP i
and TSP j. The data term is set to be a constant if no user
interaction is involved. While for the sake of interactivity of
our program, it will be set by the following manner if the
user specifies strokes indicating the sampling of foreground
and background on frames

El
d(y

l
i) =

{
p(xli|F)/(p(xli|F) + p(xli|B)) if yli = 0

1− El
d(0) otherwise.

(18)

where F and B represent foreground and background models
learned from user-specified samples and p(xli|·) denotes the
likelihood of TSP i under the corresponding model, based on
its color feature xli.
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Clustering Results Final Cutout Results
Motion-excluded Motion-included Motion-excluded Motion-included

Original Videos
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Fig. 6. Unsupervised object co-segmentation results by motion-excluded vs. motion-included features on four video groups. From top to bottom: video
groups BlackCar, FuzzyToy, Hobbits and Baby. In each group, from left to right: original videos, clustering as well as final cutout results with motion-excluded
and motion-included features separately.

VII. EXPERIMENTS

A. Evaluation on the clustering results

Since we formulate video co-segmentation as a clustering
problem in Section V, even though it is not the final goal of
our purposed algorithm, we still evaluate the effectiveness of
our approach by comparing our results against those by [9] at
the very beginning.

In [9], a multi-class video co-segmentation dataset MOViCS
which contains 11 videos belonging to 4 groups is released and
an evaluation method that measures the average accuracy of
the best matching clusters to each classes in ground truth is
proposed. Specifically, the metric is defined as

Score =
1

C

∑
j

max
i

Si ∩Gj

Si ∪Gj
(19)

where Si is a set of segments belonging to Class i, Gj is
the set of segments of Class j in ground truth, and C is the
number of classes in ground truth.

In our experiments, we use the same criterion to compare
the clustering results. Besides, we compare the runtime under
the same computer configuration Intel Core 2 Duo E8500 @
3.16GHz with 8GB RAM as used in [9]. Figure 5 illustrates
the performance scores and Table I shows the runtime. From
Figure 5, we can see for 3 out of 4 video groups our method
produces better, or at least comparable clustering results except
the 2nd video group, which will be further discussed as a
failure case in the later subsection. However, as our method
treats the TSPs instead of superpixels in all frames as the basic
units so that data size is much reduced, it runs much faster
than [9], as shown in Table I.
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(a)
(b)

(c)
(d)

Fig. 7. Unsupervised object co-segmentation results on four groups of videos. (a)∼(d): video groups IceSkater, KiteSurfer, Nemo and Toycar. In each group,
each row corresponds to a video and columns from left to right show raw frames, results by [7] (black means background) and by our method. See the
accompanying video.

B. Unsupervised object co-segmentation

Our framework can produce object co-segmentation results
for videos with unrelated backgrounds, in a fully unsupervised
manner. Figures 6 and 7 show eight groups of results on a wide
range of videos by our system, without any user guidance.
Each of the video groups BlackCar, FuzzyToy, Hobbits, Baby
and Nemo consists of two source videos, while each of the
rest ones comprises three videos. The resolutions of input
videos range from 344 × 327 to 1280 × 536 and numbers
of frames range from 30 to 127. Most foreground objects
have distinct motions from the background, nevertheless, fore-
ground motions across different videos in the same group are
not necessarily similar. Rows 7 and 8 in Figure 6 show such an
example where the father and his baby present quite different
motions in the two source videos. All the results are shown in
our accompanying video.

1) Motion-excluded vs. Motion-included: As a complement
to appearance, motion information is fed into the subspace
clustering algorithm for better differentiating foreground and
background within each video. To validate this, Figure 6 shows
four groups of results in each group of which we compare the
performance of subspace clustering and the final cutout results
with and without motion feature used. Note that in the video
group BlackCar, the black running car in the 2nd video has
similar colors and textures to the ground due to the impact of
backlight shot, causing it difficult to differentiate them with
appearance features only. Accordingly, we can see from the

2nd column showing the clustering results, the ground and
the car are clustered together. Furthermore, they are extracted
simultaneously in the final cutout results as shown in the
4th column. By comparison, they are grouped into different
clusters by our motion-included subspace clustering, and as a
result, the car is successfully segmented from the video. Such
a case also holds for the rest three video groups. Table II shows
that incorporating motion into our framework improves both
precision and recall on the four video groups over the motion-
excluded implementation. The performance of both clustering
and cutout is improved by ten to twenty percents, varying
according to different video groups.

TABLE II
PRECISION AND RECALL OF CUTOUT RESULTS BY MOTION-EXCLUDED

AND MOTION-INCLUDED FEATURES.

Motion-excluded Motion-included
Precision Recall Precision Recall

BlackCar 0.8423 0.8957 0.9634 0.9703
FuzzyToy 0.7989 0.8943 0.9821 0.9857
Hobbits 0.7960 0.8480 0.9729 0.9729

Baby 0.8916 0.8137 0.9748 0.9904

2) The method in [7] vs. ours: We further compare our
algorithm with the video object co-segmentation method
purposed in [7]. Unlike [7] which only accepts the videos
depicting an object with similar motions in addition to similar
appearance, and heavily relies on an initial estimation of the
foreground and background labelling based on objectness and
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Fig. 8. Cutout results of more frames in video group Baby. Rows 1, 4 are the original video frames, rows 2, 5 are the results by [7] and rows 3, 6 are the
results by our method.

TABLE III
PRECISION AND RECALL OF UNSUPERVISED OBJECT CO-SEGMENTATION

RESULTS BY [7] AND OUR METHOD.

[7] Ours
Precision Recall Precision Recall

Nemo 0.2073 0.7113 0.9571 0.9808
IceSkater 0.3907 0.6308 0.9206 0.8784
KiteSurfer 0.0696 0.5822 0.7919 0.5364

Toycar 0.4785 0.5593 0.9111 0.9635

saliency detection, our method is more suitable for generic
video data which only requires similar visual appearance of
the common foreground in the video group.

Figure 7 shows another four groups of videos, and each
group is co-segmented by [7] and our method. Experimental
results show that our method can produce cutout with much
higher accuracy than [7]. Note that the videos IceSkater
and KiteSurfer are from [7] and both video groups present
little appearance similarities on foreground, which are not
fully suitable for our formulation of video co-segmentation
problem. In [7], an initial common foreground was detected by
saliency and objectness and was used to guide the following
co-segmentation task. So here for fair comparison, we also
provide an initial foreground estimation for our implementa-
tion using the same manner to avoid the ambiguity of fore-
ground and background. Yet due to heterogeneous foreground
involved, the third term in Equation (16) is violated to some
extent. Even so, the experimental results clearly show that
the algorithm of [7] presents large segmentation errors on
most video examples. Table III compares the precision and
recall on the video examples of [7] and our method, based
on the ground truth we manually obtained using Adobe After
Effects [38]. We also conduct the comparison using the video
group Baby, and illustrate more frames in Figure 8. Please see

our accompanying video for the live demo. A high resolution
version can be browsed or downloaded from the link YouTube
and GoogleDrive.

C. Object co-segmentation with moderate user guidance

Our framework can also produce object co-segmentation
results for those videos with similar background, under which
circumstance user guidance has to be involved to assist the
segmentation. However, our system does not require the user
to draw strokes on every video sequence in a group. For each
video group, very limited number of strokes on a few frames
in one input video are enough for our system to generate
satisfactory results. This avoids much repetitive work, and
significantly reduces users efforts.

Figure 9 shows some of the co-segmentation results with
moderate user guidance. In the video group Flowers, the
upper-left video contains scattered foreground objects with
different sizes, some of which are small and hard to draw
strokes on. Traditional video cutout tools like Rotobrush of
Adobe After Effects often require users to specify strokes on
all the foreground objects, and this work needs to be done
on all videos separately. While with our video object co-
segmentation method, users just need to draw strokes on one
frame in any video source, and then the rest videos will be co-
segmented, guided by the prior knowledge on foreground thus
obtained. For the group Girl, although background clutter and
color ambiguity are apparent in the source videos, we only
draw strokes on 3 frames of one video source even though
the background motion is more complex. The cutout results
are comparable to ground truth(see Table IV). In Figure 10,
we also show cutout results of more frames of one of the
examples, the video group Girl. Please see our accompanying
video for the live demo.

http://youtu.be/vbeN6JMkuGk
https://drive.google.com/file/d/0B36LTnSOGMdHZWpjWmp5bHVla3M/edit?usp=sharing
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(a) Girl (b) Cheetah

(c) Flowers

Fig. 9. Object co-segmentation with moderate user guidance. (a)∼(c): video groups Girl, Cheetah and Flowers. In each group, from left to right: original
video frame, results by image co-segmentation method [18] and by ours. For each video group, we just draw strokes (green: foreground, red: background) on
no more than 3 frames of one video only. See also the accompanying video.

We also compare our video cutout results with the ones
generated by applying one of the state-of-the-art image co-
segmentation approaches [18] to all the video frames in
each of the video groups. For fair comparison, the publicly
available code1 is slightly modified for accepting input fore-
ground/background labels. We feed the implementation of this
approach with ground-truth of the frames we draw strokes
on as the guidance for segmentation. Furthermore, due to
the high computational complexity of this approach, each
video frame is down-sampled to a resolution so that width
and height do not exceed 160 pixels. As shown in Figure 9,
the foreground and background produced by the image co-
segmentation approach are shown in green and red separately.
Obviously, our video co-segmentation framework performs
consistently better on the three video groups even though
we give aforementioned advantages to image co-segmentation
approach. Besides the potential lack of robustness, the reason
might also be that the image co-segmentation working in
this manner ignores the intrinsic nature of spatio-temporal
consistency of the video, and pays little attention to the
consistency of cutout results of neighboring video frames.
In comparison, working on TSPs which is locally consistent
over frames, our approach successfully generates high-quality
results by leveraging the motion coherence within each video
and foreground consistency across different videos.

D. Limitations

Our method takes TSP as the basic unit during the pro-
cedures of clustering and the successive object cutout. This

1http://ai.stanford.edu/ ajoulin/index.php?page=coseg

TABLE IV
PRECISION AND RECALL OF OBJECT CO-SEGMENTATION RESULTS BY OUR

METHOD, WITH MODERATE USER GUIDANCE.

Precision Recall
Girl 0.9861 0.7926

Cheetah 0.9716 0.6358
Flowers 0.9537 0.9596

highly reduces the amount of data to be processed so that the
efficiency is improved. Motion information, characterized by
the trajectories of TSPs, is incorporated into the subspace clus-
tering for better differentiating foreground from background.
However, if severe occlusion happens, it is often challenging
to get a complete trajectory which is consistent over all
video frames. This will degrade the performance of clustering.
Figure 11 visualizes the changing of all TSPs over time for the
second video in the video group giraffe, elephant. Besides the
fact that the elephant, giraffe and meadow have similar color
distribution, TSPs on the elephant have inconsistent labels
before and after the occlusion by the giraffe. Moreover, the
giraffe is always static throughout the sequence, resulting in
motion unable to distinguish it from the background. These
factors lead to the poor performance of clustering.

We further apply our approach to a more challenging
video group Jetfoil (Figure 12). In this video group, besides
complicated background such as the ships and buildings which
contain similar black color as the jetfoil, severe occlusion (the
ship occludes the jetfoil in Video 1) and defocus blur (Frame
22 in Video 2) exist, so that the TSPs are more likely to
be inconsistent. Under these conditions, the degraded motion
trajectory loses its power to distinguish various object motions,

http://ai.stanford.edu/~ajoulin/index.php?page=coseg


PAPER SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA 12

Fig. 10. Cutout results of more frames in video group Girl. Rows 1, 3, 5 are original video frames, and rows 2, 4, 6 are results by our method.

causing some of the background and foreground regions are
grouped and extracted together. Although in our current system
the quality of results may be improved by adding more user
inputs, more advanced motion segmentation techniques such
as exploring the application of low-rank representation to the
contaminated motion trajectories can be potentially coupled
with the amf-co-segmentation to achieve more robust results
in the future.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a novel framework for video object co-
segmentation. Our experiments show that with moderate or
even no user guidance, common foreground can be segmented
simultaneously from a group of videos. Our approach can
make full use of the appearance and motion information
embodied in the videos for co-segmentation. This is realized
by a new appearance-motion-fused video co-segmentation
algorithm via subspace clustering, which yields consistent
labeling of the common foreground across different videos.
Furthermore, we define video object co-segmentation as a
binary labeling problem that can be solved by QPBO in an
MRF framework. The framework imposes the constraint of the
foreground model automatically computed or specified with
little user effort.

Our framework realizes video object co-segmentation in a
manner of global optimization on the videos, but it lacks a
fine-tuning mechanism for locally refining the results. Since
the common foreground of different videos would complement
each other, in the future we plan to take a co-refinement step
that corrects the errors and refines the result in a video by
exploiting the good result in another one. For example, the
user first drags a rectangle around the area of segmentation

errors in a video frame. The rectangle is then propagated to
the successive frames, and the result is refined within these
frames by local optimization, while imposing the constraint
of good results of other videos in the same group.

Another solution is to adopt the local classifiers as [1][15] to
handle the problem of inseparable statistics. Exploring the pos-
sibility of combining our framework with the local classifier-
based video segmentation techniques is another interesting
work. In addition, we plan to solve the matte of the foreground
and remove remaining errors around object boundaries through
an additive step of coherent matting which has been proven
effective by previous video cutout systems [1][14][15].
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